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ABSTRACT

Measuring soil moisture remotely is an objective for many investipators. Applications of
remotely determined soil moisture range from agriculture (where moisture relates to crop
growth) to civil works (where moisture relates to stope failures in levees, dams, and along
highways). Two methods are used to estimate soil moisture remotely using the 0.4-to
14.0-micron wavelength region: (1} measurement of spectral reflectance, and (2) measurement of
soil temperature. The reflectance method is based on observations which show that directional -
reflectance decreases as soil moisture increases for a given material. The soil temperature method
is based on observations which show that differences between daytime and nighttime soil tempet-
atures decrease as moisture content increases for 2 given material, In some circumstances, sepa-
rate reflectance or temperature measurements yield ambiguous data, in which case these two
methods may be combined to obtain a valid soil moisture determination. In this combined
approach, reflectance is used to estimate low moisture levels; and thermal inertia (ot thermal
diffusivity) is used to estimate higher levels. The reflectance method appears promising for
surface estimates of soil moisture, whereas the temperature method appears promising for esti-
mates of nearsubsurface (0 to 10cm). Both methods require additional laboratory and field
investigations,

INTRODUCTION

Measuring soil moisture remotely has been an objective for many investigators. The applications of remotely determined
soil moisture range from agricukture (in which moisture is related to crop growth) to civil works. A recent ¢ivil works application
for remote sensing of soil moisture is the study of slope fuilures (e.g., landslides} (Greeley et al., 1974). Moisture is a major
factor in slope stability studies because it increases weight, reduces shearing resistance, and significantly reduces shear strengths
of materials (especially certain clay minerals). Many slopes with marginal stability have become active landslides becaunse of the
addition of water. A recent study (Taylor and Brabb, 1972) showed that the costs of structuraily damaging landslides in the San
Francisco bay region during the winter of 1968-62 -were over $25 million. Ames Research Center and the U.S. Army Corps of
Engineers are attempting to combine remote moisture sensing with engineering geology to assess slope stability in the bay
region. An illustration of the gualitative information provided in an infrared image of 2 selected landstide is shown in Fig. 1.
Boundaries of the landslide head scarp, main bady, and toe are clearly delineated by surface temperature differences. These
differences, which coincide with shear zones, indicate subsurface moisture accumulations, ground water seepage localities, and
regions of poorly consolidated materials. Clearly, remate measurements of soil moisture can be usefully applied to landslides on
a qualitative basis. What remains to be determined is the extent to which remote measurements of soil moisture can be

quantified.

Quantitative measurements of remotely determined soil moisture have been attempted using different regions of the
spectrum: visible, near-infrared, and thermal infrared (Tanguay, 1969; Werner and Schmer, 1971; Allen, 1972; and Parks ef al.,



1973); and microwave (Jean, 1971). Under controlled conditions, encouraging results have been obtained from laboratoty
experiments and from some field applications using methods in the visible to the thermal infrared region. Recently, positive
correlations have also been observed using methods in the microwave region (Schmugge et al., 1974); however, very sophisti-
cated equipment is required and interference effects may pose serious problems for some geologic applications (Blinn et ai.,
1972). We are initiating our remote scnsing activities to study soil moisture in the 0.4-to 14.0-micron region because: the
equipment is inherenily simpler; the causes of anomalies are more easily determined; and the methods have already produced
promising qualitative results.

Mujor factors affecting reflectance and temperature correlations with soil moisture include meteorology, albedo, thermal
properties, and emissivity. The effects of these parameters are currently being assessed at Ames. This paper reviews the
reflectance and temperature methods usced for seil moisture correlations and identifies some of the features responsible for the
behavior observed in the visible and infrared spectrum. ’

REFLECTANCE AND TEMPERATURE CORRELATIONS WITH SOIL MOISTURE

Two methods for estimating soil moisture remotely using the 0.4- to 14.0-micron wavelength region are: (1) measurement
of spectral reflectance and {2) measurement of soil temperature. The reflectance method is based on observations showing that
directional reflectance decreases as soil moisture increases for a given soil. The soil temperature method is based on observations
showing that differences between daytime and righttime soil temperatures decrease as moisture content increases for a given
soil.

Reflectance Method — Directional reflectance measurements performed in the laboratory at Ames show that refleciance
decreases as soil moisture increases for wavelengths from 0.4 to 1.3 microns (Fig. 2). While this observation is valid for any soil
type, it can be applicd only for a given soil at any one time because of effects produced in the soil by different grain sizes,
textures, and mineralogy (Fig. 3). Recent studies (Parks ef gl., 1973) show that this relationship may continue to a wavelength
of 2.5 microns. However, in this region of the infrared, so little solar radiation reaches the ground that this wavelength may not
be helpful for field studies. Total reflectance measurements performed in the laboratory using an integrating-sphere spectro-
photometer (Bowers and Hanks, 1965) show that reflectance differences are greater in the near-infrared spectrum than in the
visible and are greatest at 1.4 and 1.9 microns (Fig. 4), where water absorption bands occur. While these two wavelengths yield
valid correlations for ground measurements, they cannot be used for remote sensing from an airplane or satellite because these
bands are almosi completely absorbed in the atmosphere by water vapor (Plass and Yates, 1965).

Recent field studies (Coulson and Reynolds, 1971) used hemispheric reflectance measurements to evaluate the influence of
direct solar radiation, diffuse sky radiation, and polarization. These measurements are essential to an understanding of the
nagure of the reflected energy from natural surfaces and are more representative of the types of reflectance seen by multispec-
tral scanners than those seen by typical directional reflectance instruments or total reflectance (integratingsphere type)
instruments.

Laboratory reflectance measurements from moist soils require special attention to prevent anomalous relationships from
being observed. Anomalous relationships are results that may be observed in the laboratory but that would not be substantiated
in the field. Two features that can producc anomalous reflectance values in the laboratory are related to: (1) type of instrument,
and (2} geometry between the detector and light source. One integrating-sphere type of instrument commonly used for soil
reflectance studies accepts only a small sample (a few centimeters square) and it must be mounted vertically. The soil must be
pressed against a glass slide to prevent it from falling into the sphere and to form a flat reflecting plane. This procedure produces
preferred orientation of mineral grains in the soil and could yield unrealistically high reflectance values for some soils (e.g., soils
rich in micaceous minerals). Also, this method produces artificial refiection boundaries, or zones, that do not exist in naturally
occurring moist soils. For example, capillary attraction of water to the glass slide occurs through intergranular pore spaces in the
soil, forming a glass-water interface through which the radiation must pass before reaching the soil.

Geometry between the detector anil light source strongly affects the intensity of the reflected radiation as the moisture
content increases in the soil. Reflectance from natura! soils is primarily diffuse (Coulson and Reynolds, 1971), whereas
reflectance from water is strongly specular (Chen et al., 1967). The specular component, which is strongest as the Brewster angle
is approached, is responsible for orders-of-magnitude increases. Laboratory reflectance measurements from moist soils show two
distinctly different reflectance curves (Fig. 5) for different geometric conditions. One condition occurs when the detector and
light source are in the principal reflecting plane and represents the combined reflectance from both the diffuse component from
the soil and the specular component from the water. This combination causes increased intensities at high moisture contents
{curves A, and A,, Fig.5) and is ohserved for all angles between the detector and light source. The intensity is considerably
stronger when the detector reaches 53° (Brewster angle) from the surface normal. The other condition occurs when the detector
is not in the principal reflecting plane and represents only the reflectance of the diffuse component from the soil and water. In
this case, the intensity gradually decreases (curve B, Fig. 5) as the moisture content of the soil increases until it reaches a
minimum value and remains relatively constant even when a layer of water 1 mm deep covers the surface of the soil.



Laboratory reflectance measurements by others (Parks er al., 1973; and Allen, 1972) have recently shown intensity
increases (Fig. 6) for high values of soil moisture. This apparent anomalous behavior may be the consequence of canfusing the
diffuse reflectance from the soil with the specular reflectance from the water.

Temperature Method — Initial attempts to correlate soil moisture with temperature were qualitative. These studies (Myers
and Heilman, 1969} revealed that temperature differences occurred between wet and dry areas of a given soil. In peneral, in the
daytime, the wet soil was cooler than the dry soil, and in the nighttime the wet soil was warmer than the dry soil. For example,
daytime airborne thermal infrared images (Fig. 7) taken over a fallow soil plot at the Renner Ranch agricultural research site
{Texas) showed the dry soit (27% moisture) was 9° O warmer than the wet soil (33% maisture) for the same soil type. However,
at the Yan Norman Dam site, a nighttime image (Fig. 8) showed the wet soils were cooler than the dry soils. [n this case, the
ground temperature was inversely related to moisture content (Fig. 9} for near vertically dipping sedimentary strata of inter-
bedded sandy silts and silty sands. Some of the silty sands were seeping free-flowing cold ground water, which accounts for why
they were nearly the same temperature. The anomalous results described above clearly establish the need to conduct more
quantitgtive studies, which include heat transfer characteristics of the material being observed.

Recent experiments performed at Ames Tave shown that small temperature differences occurring in sandy soils are related
to subsurface moisture differences at depths greater than 10 cm. In these experiments, two soil bins were filled with sand and
instrumented with thermistors for in sit temperature measurements. The thermistors were coated with sand and placed level
with the surface. One bin was saturated with water; the other was not. The mean temperature, calculated from five separate
thermistors, of both- bins was plotted vs. time (Fig. 10} for 2 weeks under ideal weather conditions. After the first week, the
moisture content at 0to 10 cm deep was the same in both bins (about 1% at 0 to 5 cm, and 29 at 5 to 10 cm) yet smail
temperature differences were commonly observed (2 to 3° C in the daytime and 1° C in the nighttime). The data show that
surface temperature differences of 2 to 3° ¢ can be produced by subsurface moisture differences oceurring in the same soil at
depths greater than 10 cm.

Data from unpublished field investigations performed by R. Jackson, USDA Water Conservation Laboratory in Phoenix,
Arizona, and T. Schmugge, NASA-Goddard Space Flight Center in Greenbelt, Maryland (personal communication) indicate the
differance between. maximum and minimum soil temperatures taken over a diurnal cycle decreases with increasing soil moisture.
This correlation (Fig. 11) is valid for surfaces to 1 cm and soil layers to a depth of 5 t0 9 em. This correlation is likely valid for
soil depths equaling the solar heating influence (approximately 75 cm) during the diurnal cycle. The correlation is possible
because water changes the heat-transfer characteristics of soil. As the moisture content increases in the soil {by displacing air in’
the intergranular pore spaces), it increases the bulk density {p) specific heat (c), and thermal conductivity (k). Because water
affects each of these, it is necessary to relate them to some other parameter that is a measure of p, ¢, and k. Thermal inertia
(\/m) or thermal diffusivity (k/p-c) are two possible parameters. Thermal inertia is a measure of the rate of heat transfer at
the interface between two dissimilar media (e.g., soil and air), whereas thermal diffusivity is a measure of the change in
temperature produced in a substance as heat fiows through it (e.g., soil at different depths). For all soils, thermal diffusivity
increases more rapidly than thermal inertia as moisture content increases. For example, in a saturated sand, thermal diffusivity is
about 10 times greater (Fig. 12) than when the sand is dry (Nakshabandi and Kohnke, 1965). At saturation, the thermal
diffusivity no longer increases with increasing water content. In contrast, for a water-saturated soil {intergranular pore
spaces filled with water) with 30% porosity, the thermal inertia is two times greater fFig. 13) than when the scil is dry
{(Watson ef al., 1971). : "

The temperature versus soil meisture correlation has been determined from ground measurements using thermistors and
thermocouples as scnsors, The temperature can also be determined remotely from an airplane by using a radiometer sensing
emitted radiation in the 8 to 14 microns region, Unfortunately, infrared radiometric temperature measurements of soils do not
equal actual soil temperatures (Marlatt, 1967) because the soils have enissivities less than a blackbody. The temperature value
determined by radiometric methods is lower than the actual temperature after corrections for sky radiance have been applied
{Ludlum, 1965). Most soil emissivities vary from 0.7 to 0.9, depending on texture, grain size, and mineralogy. The emissivity
value of the soil increases also with water content (Fuchs and Tanner, 1968). However, for the same soil type and given
condilions, the change in temperature observed using a radiometer is the same as the actual change. ’

For the soil moisture-temperature correlation to be valid, both maximum and mininmuam soil temperatures must be known;
this is not possible without real-time monitoring. However, maximum and minimum soil temperatures can be derived. To derive
these values, soil temperatures must be measured near the diumal extremes of heating and cooling with a calibrated infrared
radiometer. The thermal inertia or thermal diffusivity of that same soil must also be measured, The temperature and thermal
data can then be used in a radiative heat-transfer model (Watson, 1971) (Fig. 14) to calculate ground temperature versus time
over a diurnal cycle for materials of different thermal properties. In addition to calculating temperature versus time for materials
having different thermal inertias, this model provides corrections for site latitude, slope directions, slope angle, solar declination,
and albedo. Therefore, with only a one-time measurement of thermal properties, a radiative heat-transfer model, and periodic
day and nighttime remotely sensed temperature values, seasonal changes in soil moisture can be assessed to a depth of
approximately 10 cm.

Combination of Reflectance and Temperature Methods — Under some circumstances, separate reflectance or temperature
measurements yield ambiguous data. In these cases, the two methods may sometimes be combined (Fig. 15) to abtain a vaiid



reading. Suggestions have been made (Allen, 1972) that reflectance methods should be employed to estimate low levels of soil
moisture and thermal diffusivity to estimate higher levels. Each methed is reliable if used in its region of greatest sensitivity. For
example, reflectance should be used in region ! on Fig. 15 and thermal diffusivity in regions Il and 1.

DISCUSSION

Reflectance methods for estimating soil moistore are further developed than temperature methods. The reflectance method
appears promising for estimating soil meoisture at the surface, and the temperature method appears promising for estimating soil
moistute near the surface (0 to 10 cm) and perhaps slightly deeper. However, both methads reguire additional laborutory and
field investigations. The laboratory studies are required to determine the conditions under which positive soil moisture correla-
tions are possible. These results are needed to interpret apparent anomalies ocourring in the field data. In addition to laboratory
studies, rigotous field tests are essential. The field program must include actual ground measurements of all significant param-
eters for comparison with data acquired remotely by aircraft.
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AERIAL PHOTOGRAPH

INFRARED LINE SCANNER

WHITE = WARM
DARK =COOL

FIGURE 1. IMAGES OF LANDSLIDE AT SAN JOSE HIGHLANDS, CALIFORNIA: (a) Aerial photograph, and
(b) Infrared scanner.
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FIGURE 5. NORMALIZED REFLECTANCE VS SOIL

MOISTURE. Curves A; and A, illustrate reflectance
of the diffuse component from soil and the specular
components from water for detector view angles of
53% and 20° from the surface normal. Curve B illus-
trates reflectance of the diffuse component from soil
and water for detector view angle of 53° from the
surface normal.
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FIGURE 6. NORMALIZED REFLECTANCE VS SOIL

MOISTURE. Curve A illustrates reflectance decreases
with rising moisture content. Curves B and C illus-
trate intensity increases for soils having high moisture
contents. This anomalous behavior may result from
observing diffuse reflectance from the soil and specu-
lar reflectance from the water.
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FIGURE 7. DAYTIME INFRARED LINE SCANNER

IMAGE OF AGRICULTURAL RESEARCH TEST
SITE AT RENNER RANCH, TEXAS (courtesy of D.
Mohr, Texas Instruments).

LIGHT = WARM (SANDY SILTS ARE DRY)
DARK =COOL (SILTY SANDS ARE WET)

FIGURE 8. NIGHTTIME INFRARED LINE SCANNER

IMAGE AT NEAR VERTICALLY DIPPING SEDI-
MENTARY BEDS OF SAND AND SILT AT VAN
NORMAN DAM SITE. The sands have freeflowing
cold ground water. This explains why these beds,
with the highest moisture content, are colder than the
drier silts.
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suturated with water on August 29, 1973. By September 7, 1973, the moisture content in the top 10 ¢cm of each bin was
the same, vet measurable temperature differences were abserved.
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